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Abstract. The BK evolution equation was evaluated numerically with full dependence on impact
parameter and several distinct behaviors were found. Thesebehaviors are presented for the leading
logarithmic kernel in the BK evolution equation with both fixed and running coupling. The satura-
tion scale was found to agree with analytic expectations. The results for the evolution with running
coupling were then compared to the HERA data of theF2 structure function.
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INTRODUCTION

At small values ofxb j it is expected that the growth of the number of gluons inside
nucleons has to be damped and the system should become saturated. In this saturated
regime gluon recombination effects become important and new dynamics become emer-
gent. One result from the study of this saturation region is the Balitsky-Kovchegov (BK)
evolution equation (1) [1, 2]. The BK equation is an integro-differential equation which
evolves towards smallerx. It was shown that the BK equation can be derived within the
dipole model [3], where a virtual photon fluctuates into aqq̄ pair before interacting with
the nucleon via pomeron exchange. In this model the solutionto the BK equation is the
scattering amplitude between the color dipole and the nucleon. The evolution towards
smallerx can be described as dipole cascade where the incoming (parent) color dipole
emits a gluon, effectively splitting into two color dipoles. This splitting is given by the
kernel of the BK equation which contains the dynamics of the dipole splitting as well as
the running of the couplingαs. The BK equation has the form

∂Nx0x1

∂Y
=

∫

dx2
2

2π
K(x0,x1,x2) [Nx0x2 +Nx1x2 −Nx0x1 −Nx0x2Nx1x2] (1)

whereN is the scattering amplitude and it is dependent on the coordinates of the
dipole involved. The parent dipole is defined by coordinatesx0x1 which splits into two
daughter dipolesx0x2 andx1x2 with K(x0,x1,x2) defined to be the splitting kernel1.

1 Bold denotes vetor quantities
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FIGURE 1. Two plots of scattering amplitude versus dipole size for different sizes of impact parameter.
The left graph has a impact parameter of 1.00 and each curve indicates one unit of rapidity past the iniital
condition to a maximum of ten. The right graph has a impact parameter of 100.00 and each curve is five
units of rapidity past the initial condition to a maximum of 50. The initial condition on the right is near
zero for this impact parameter. It is clear on the right graphthat the evolution equation picks outr = 2b
and a peak forms at that point. The appearance of a second evolution front towards large dipole sizes can
be seen in addition to the usual evolution front towards small dipole sizes.

BK EQUATION WITH IMPACT PARAMETER DEPENDENCE

There have been several other numerical solutions to the BK equation [4, 5, 6, 7] with
most of them neglecting impact parameter. The inclusion of impact parameter has a
marked affect [8, 9] on the evolution of the scattering amplitude. The initial analysis
was done with the leading logarithmic (LL) kernel (2) and fixed couplingαsNc

π = 0.1.2

K =
dz
z

x2
01

x2
02x2

12

(2)

Inclusion of impact parameter has the distinct feature of causing the scattering ampli-
tude for large dipole sizes to go to zero. With impact parameter dependence the target
is localized and large dipoles miss the target giving us a zero scattering amplitude. This
can be seen in Fig:1 where the inital condition which is of a Glauber-Mueller type (3)
quickly drops to zero for large dipole sizes.

Nx0x1 = 1− e−x2
01eb2

01/4
(3)

The graphs in this section have no units as no physical scale was imposed in the
problem, this will be done in the next section for comparisonwith data.

It is also found that when dipole size is equal to twice the impact parameterx01= 2b01
there is an enhancement in the evolution creating a peak at this position. The reason
for this peak was described in terms of the dipole model as well as the conformal
eigenfunction representation [10] which is described morein [8].

2 x01 = |x0− x1| andb01 =
1
2|x0+ x1|



The saturation scaleQs is the scale at which parton recombination effects become
important and is defined as< Nx0x1 >= κ whereκ = 0.5 is chosen. The saturation
scale is parameterized asQ2

s = Q2
s0eλsY ᾱs where the exponentλs can be extracted from

asymtopically high rapidities. It was found that our solution for the evolution with the
LL kernel thatλs = 4.4 which is in agreement with analytic predictions [11].

Comparison with HERA data

Our numerical solution for the scattering amplitude can be compared to data from H1
and ZEUS [12] by computing theF2 structure function for the proton.

F2(Q
2,x) =

Q2

4π2αem

∫

d2r
∫ 1

0
dz

(

|Ψ(r,Q2,z)T |
2+ |Ψ(r,Q2,z)L|

2)σbdip(r,x) (4)

Here σdip(r,x) =
∫

d2b2N(r,b,Y ) and |Ψ(r,Q2,x)T/L|
2 is the probability for the

virtual photon to fluctuate into a color dipole [13]. To meaningfully compare the solution
of the BK equation with impact parameter to the data running coupling must be taken
into account in the kernel. There are two calculations whichdo this [14, 15] and we
chose to implement the one by Balitsky as the Kovchegov-Weigert prescription was
found to be more numerically involved to evaluate. We also implemented massive cuts
on the kernel in the form of theta functions (5). When the emitted daughter dipoles
exceeded a scale1m the kernel was set to zero, this damped the growth of the amplitude
in the non-perturbative large-dipole regime. Several other methods for impliementing
these massive cuts were attempted [16] and this method was found to be most consistent
with the data.

K =
Ncαs(x2

01)

2π2

[

1

x2
02

(

αs(x2
02)

αs(x2
12)

−1

)

+
1

x2
12

(

αs(x2
12)

αs(x2
02)

−1

)

+
x2

01

x2
12x2

02

]

Θ(
1

m2−x2
02)Θ(

1
m2−x2

12)

(5)
The coupling constant was chosen to be regulated by adding ina mass parameterµ

into the coupling asαs(x2)= 1

bln
[

Λ−2
(

1
x2+µ2

)] . The regularization of the coupling is more

important with impact parameter dependence due to the second evolution front at large
dipole size which is highly dependent on the coupling in thisregime.

The initial condition was taken from [17] which was fit to theF2 data andY = 0
was set toxb j = 10−2. The Balitsky kernel slows the evolution down a dramatic amount
which allows it to qualitativly fit the data. The calculationis below the data, as can be
seen in Fig:2, because the mass cuts remove a non-trivial contribution from very large
dipole sizes. This contribution must be added in seperatelyas either a fit term, a vector
meson dominance (VMD) term or a combination of the two. Theseadditional terms
were added in [16].

The evolution with Balitsky kernel was found to be very sensitive to the regularization
details. This could be attributed to the highly nonlinear form of this kernel, but more
analysis should be performed in order to understand this sensitivity
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FIGURE 2. Plots of F2 comparing the solution of the BK equation with the Balitsky kernel with
parameter values ofµ = 0.52GeV m = 350MeV to combined HERA data [12].
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